Math 261

Spring 2023
Lecture 43

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { find the aren below } f(x)=x^{3} \text {, above } \\
& x \text {-axis, from } x=1 \text { to } x=2 \text {. } \\
& \left\{\begin{array}{l}
a=1, b=2 \\
\Delta x=\frac{b-a}{n}=\frac{1}{n}
\end{array}\right. \\
& \mapsto x_{i}=a+i \Delta x \\
& A_{i}=f\left(x_{i}\right) \cdot \Delta x=\left(1+\frac{i}{n}\right)^{3} \cdot \frac{1}{n} \\
& \text { Recall } \\
& \begin{array}{l}
\text { Recall } \\
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{array} \\
& \left(1+\frac{i}{n}\right)^{3}=1+\frac{3 i}{n}+\frac{3 i^{2}}{n^{2}}+\frac{i^{3}}{n^{3}} \\
& A_{i}=\left(1+\frac{i}{n}\right)^{3} \cdot \frac{1}{n}=\frac{1}{n}+\frac{3 i}{n^{2}}+\frac{3 i^{2}}{n^{3}}+\frac{i^{3}}{n^{4}} \\
& \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n}\left[\frac{1}{n}+\frac{3 i}{n^{2}}+\frac{3 i^{2}}{n^{3}}+\frac{i^{3}}{n^{4}}\right] \\
& \begin{array}{l}
=\sum_{i=1}^{n} \frac{1}{n}+\sum_{i=1}^{n} \frac{3 i}{n^{2}}+\sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}}+\sum_{i=1}^{n} \frac{i^{3}}{n^{4}} \\
=\frac{1}{n} \sum_{i=1}^{n} 1+\frac{3}{n^{2}} \sum_{i=1}^{n} i+\frac{3}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}
\end{array}
\end{aligned}
$$

May 2-8:53 AM

$$
\begin{aligned}
& \text { Introduction to integration } \\
& \int f^{\prime}(x) d x=f(x)+C \\
& \int \cos x d x=\sin x+C \\
& \int \sec ^{2} x d x=\tan x+C \\
& \int 2 x d x=x^{2}+C \\
& \text { Sind } \int x^{3} d x=\frac{x^{3+1}}{3+1}+C=\frac{1}{4} x^{4}+C \\
& \left\{x^{n} d x=\frac{x^{n+1}}{n+1}+C=\frac{d}{d x}\left[\frac{1}{4} x^{4}+C\right]\right. \\
& \text { if } n \neq-1
\end{aligned}
$$

find

$$
\begin{aligned}
\int_{x}^{\sqrt{x}} d x & =\int x^{1 / 2} d x \\
& =\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C \\
& =\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C \\
& =\frac{2}{3} x^{3 / 2}+C
\end{aligned}
$$

To verify

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{2}{3} x^{\frac{3}{2}}+c\right] & =\frac{x}{\not 2} \cdot \frac{x}{x} \cdot x^{\frac{3}{2}-1}+0 \\
& =x^{\frac{1}{2}}=\sqrt{x}
\end{aligned}
$$

May 2-9:13 AM

$$
\int f^{\prime}(x) d x=f(x)+C \quad \text { Indefinite Integral }
$$

$$
\int_{a}^{b} f^{\prime}(x) d x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)
$$

Definite integral

$$
\begin{aligned}
\int_{1}^{2} x^{3} d x=\left.\frac{x^{3+1}}{3+1}\right|_{1} ^{2} & =\left.\frac{1}{4} x^{4}\right|_{1} ^{2} \\
& =\frac{1}{4}\left[2^{4}-1^{4}\right]=\frac{1}{4} \cdot 15=3.35
\end{aligned}
$$

Evaluate $\int_{1}^{4} \sqrt{x} d x$

$$
\begin{aligned}
& \int_{1}^{4} \sqrt{x} d x=\int_{1}^{4} x^{1 / 2} d x=\left.\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|_{1} ^{4} \\
& =\left.\frac{x^{3 / 2}}{3 / 2}\right|_{1} ^{4}=\left.\frac{2}{3} x^{3 / 2}\right|_{1} ^{4}=\left.\frac{2}{3} \cdot x \sqrt{x}\right|_{1} ^{4} \\
& =\frac{2}{3}\left[\begin{array}{cc}
4 \sqrt{4} & -1 \sqrt{1}] \\
5(x)=\sqrt{x}
\end{array}\right]=\frac{2}{3} \cdot[8-1]=\frac{2}{3} \cdot 7=\frac{14}{3} \\
& {\left[\begin{array}{l}
4 \\
\vdots
\end{array} \int_{1}^{4} \sqrt{x} d x=\frac{14}{3}\right.} \\
& 1
\end{aligned}
$$

find the area below $f(x)=\sin x$, above x-axis from $x=0$ to $x=\pi$.

$$
\begin{aligned}
& f(x)=\sin x \\
& A r e a=\int_{0}^{\pi} \sin x d x \\
&=-\left.\cos x\right|_{0} ^{\pi} 1 \\
&=-[\cos \pi-\cos 0] \\
&=-[-1-1]=2
\end{aligned}
$$

find the shaded area below:

$$
\begin{aligned}
& \text { : } \underbrace{\pi / 4}_{-\frac{\pi}{4}}=\operatorname{Area}=\int_{-\pi / 4}^{\pi / 4} \operatorname{Sec}^{2} x d x \\
& =\tan \frac{\pi}{4}-\left.\tan x\right|_{-\pi / 4} ^{2}\left(\frac{\pi}{4}\right)=\tan \frac{\pi}{4}+\tan \frac{\pi}{4}=1+1=2
\end{aligned}
$$

Recall $\tan (-\alpha)=-\tan \alpha$

May 2-9:31 AM
find the area enclosed by $f(x)=4-x^{2}$ and the x-axis.

$A=2 \int_{0}^{2}\left(4-x^{2}\right) d x=\left.2\left[4 x-\frac{x^{3}}{3}\right]\right|_{0} ^{2}$
$=2\left[4(2)-\frac{2^{3}}{3}-0\right]=2\left[8-\frac{8}{3}\right]$

$$
=2 \cdot \frac{16}{3}=\frac{32}{3}
$$

find the area enclosed by x-axis, $f(x)=\cos x$, from $x=-\frac{\pi}{2}$ to $x=\frac{\pi}{2}$.

May 2-9:42 AM
find the area enclosed by x-axis and

$$
\begin{aligned}
f(x) & =2 x-x^{2} . \\
& =x(2-x)
\end{aligned}
$$

$A=\int_{0}^{2}\left(2 x-x^{2}\right) d x$

$$
\begin{gathered}
=\left.\left[x^{2}-\frac{x^{3}}{3}\right]\right|_{0} ^{2}=\left(2^{2}-\frac{2^{3}}{3}\right)-\left(0^{2}-\frac{0^{3}}{3}\right) \\
=4-\frac{8}{3}-0
\end{gathered}
$$

$$
=\frac{4}{3}
$$

